26 research outputs found

    Increasing Activity in T CrB Suggests Nova Eruption Is Impending

    Get PDF
    Estimates of the accretion rate in symbiotic recurrent novae (RNe) often fall short of theoretical expectations by orders of magnitude. This apparent discrepancy can be resolved if the accumulation of mass by the white dwarf (WD) is highly sporadic, and most observations are performed during low states. Here we use a re-analysis of archival data from the Digital Access to a Sky Century @Harvard survey to argue that the most recent nova eruption in symbiotic RN T CrB, in 1946, occurred during—and was therefore triggered by—a transient accretion high state. Based on similarities in the optical light curve around 1946 and the time of the prior eruption, in 1866, we suggest that the WD in T CrB accumulates most of the fuel needed to ignite the thermonuclear runaways (TNRs) during accretion high states. A natural origin for such states is dwarf-nova like accretion-disk instabilities, which are expected in the presumably large disks in symbiotic binaries. The timing of the TNRs in symbiotic RNe could thus be set by the stability properties of their accretion disks. T CrB is in the midst of an accretion high state like the ones we posit led to the past two nova eruptions. Combined with the approach of the time at which a TNR would be expected based on the 80 yr interval between the prior two novae (2026 ± 3), the current accretion high state increases the likelihood of a TNR occurring in T CrB in the next few years

    Regulation of accretion by its outflow in a symbiotic star: the 2016 outflow fast state of MWC 560

    Get PDF
    How are accretion discs affected by their outflows? To address this question for white dwarfs accreting from cool giants, we performed optical, radio, X-ray, and ultraviolet observations of the outflow-driving symbiotic star MWC 560 (=V694 Mon) during its 2016 optical high state. We tracked multi-wavelength changes that signalled an abrupt increase in outflow power at the initiation of a months-long outflow fast state, just as the optical flux peaked: (1) an abrupt doubling of Balmer absorption velocities; (2) the onset of a 2020 μ\muJy/month increase in radio flux; and (3) an order-of-magnitude increase in soft X-ray flux. Juxtaposing to prior X-ray observations and their coeval optical spectra, we infer that both high-velocity and low-velocity optical outflow components must be simultaneously present to yield a large soft X-ray flux, which may originate in shocks where these fast and slow absorbers collide. Our optical and ultraviolet spectra indicate that the broad absorption-line gas was fast, stable, and dense (106.5\gtrsim10^{6.5} cm3^{-3}) throughout the 2016 outflow fast state, steadily feeding a lower-density (105.5\lesssim10^{5.5} cm3^{-3}) region of radio-emitting gas. Persistent optical and ultraviolet flickering indicate that the accretion disc remained intact. The stability of these properties in 2016 contrasts to their instability during MWC 560's 1990 outburst, even though the disc reached a similar accretion rate. We propose that the self-regulatory effect of a steady fast outflow from the disc in 2016 prevented a catastrophic ejection of the inner disc. This behaviour in a symbiotic binary resembles disc/outflow relationships governing accretion state changes in X-ray binaries

    Magnetic Field Evolution in Accreting White Dwarfs

    Get PDF
    We discuss the evolution of the magnetic field of an accreting white dwarf. We first show that the timescale for ohmic decay in the liquid interior is 8 to 12 billion years for a dipole field, and 4 to 6 billion years for a quadrupole field. We then compare the timescales for ohmic diffusion and accretion at different depths in the star, and for a simplified field structure and spherical accretion, calculate the time-dependent evolution of the global magnetic field at different accretion rates. In this paper, we neglect mass loss by classical nova explosions and assume the white dwarf mass increases with time. In this case, the field structure in the outer layers of the white dwarf is significantly modified for accretion rates above the critical rate (1-5) x 10^(-10) solar masses per year. We consider the implications of our results for observed systems. We propose that accretion-induced magnetic field changes are the missing evolutionary link between AM Her systems and intermediate polars. The shorter ohmic decay time for accreting white dwarfs provides a partial explanation of the lack of accreting systems with 10^9 G fields. In rapidly accreting systems such as supersoft X-ray sources, amplification of internal fields by compression may be important for Type Ia supernova ignition and explosion. Finally, spreading matter in the polar cap may induce complexity in the surface magnetic field, and explain why the more strongly accreting pole in AM Her systems has a weaker field. We conclude with speculations about the field evolution when classical nova explosions cause the white dwarf mass to decrease with time.Comment: To appear in MNRAS (15 pages, 10 figures); minor revision

    The INT photometric H alpha Survey of the Northern Galactic Plane (IPHAS)

    Get PDF
    The Isaac Newton Telescope (INT) Photometric Hα Survey of the Northern Galactic Plane (IPHAS) is a 1800-deg2 CCD survey of the northern Milky Way spanning the latitude range −5° < b < + 5° and reaching down to r′≃ 20 (10s). Representative observations and an assessment of point-source data from IPHAS, now underway, are presented. The data obtained are Wide Field Camera images in the Hα narrow-band, and Sloan r′ and i′ broad-band filters. We simulate IPHAS (r′−Hα, r′−i′) point-source colours using a spectrophotometric library of stellar spectra and available filter transmission profiles: this defines the expected colour properties of (i) solar metallicity stars, without Hα emission, and (ii) emission-line stars. Comparisons with observations of fields in Aquila show that the simulations of normal star colours reproduce the observations well for all spectral types earlier than M. A further comparison between colours synthesized from long-slit flux-calibrated spectra and IPHAS photometry for six objects in a Taurus field confirms the reliability of the pipeline calibration. Spectroscopic follow-up of a field in Cepheus shows that sources lying above the main stellar locus in the (r′− Hα, r′−i′) plane are confirmed to be emission-line objects with very few failures. In this same field, examples of Hα deficit objects (a white dwarf and a carbon star) are shown to be readily distinguished by their IPHAS colours. The role IPHAS can play in studies of spatially resolved northern Galactic nebulae is discussed briefly and illustrated by a continuum-subtracted mosaic image of Shajn 147 (a supernova remnant, 3° in diameter). The final catalogue of IPHAS point sources will contain photometry on about 80 million objects. Used on its own, or in combination with near-infrared photometric catalogues, IPHAS is a major resource for the study of stellar populations making up the disc of the Milky Way. The eventual yield of new northern emission-line objects from IPHAS is likely to be an order of magnitude increase on the number already known

    Direct evidence for shock-powered optical emission in a nova

    Get PDF
    Classical novae are thermonuclear explosions that occur on the surfaces of white dwarf stars in interacting binary systems1. It has long been thought that the luminosity of classical novae is powered by continued nuclear burning on the surface of the white dwarf after the initial runaway2. However, recent observations of gigaelectronvolt γ-rays from classical novae have hinted that shocks internal to the nova ejecta may dominate the nova emission. Shocks have also been suggested to power the luminosity of events as diverse as stellar mergers3, supernovae4 and tidal disruption events5, but observational confirmation has been lacking. Here we report simultaneous space-based optical and γ-ray observations of the 2018 nova V906 Carinae (ASASSN-18fv), revealing a remarkable series of distinct correlated flares in both bands. The optical and γ-ray flares occur simultaneously, implying a common origin in shocks. During the flares, the nova luminosity doubles, implying that the bulk of the luminosity is shock powered. Furthermore, we detect concurrent but weak X-ray emission from deeply embedded shocks, confirming that the shock power does not appear in the X-ray band and supporting its emergence at longer wavelengths. Our data, spanning the spectrum from radio to γ-ray, provide direct evidence that shocks can power substantial luminosity in classical novae and other optical transients

    Coordinated Destruction of Cellular Messages in Translation Complexes by the Gammaherpesvirus Host Shutoff Factor and the Mammalian Exonuclease Xrn1

    Get PDF
    Several viruses encode factors that promote host mRNA degradation to silence gene expression. It is unclear, however, whether cellular mRNA turnover pathways are engaged to assist in this process. In Kaposi's sarcoma-associated herpesvirus this phenotype is enacted by the host shutoff factor SOX. Here we show that SOX-induced mRNA turnover is a two-step process, in which mRNAs are first cleaved internally by SOX itself then degraded by the cellular exonuclease Xrn1. SOX therefore bypasses the regulatory steps of deadenylation and decapping normally required for Xrn1 activation. SOX is likely recruited to translating mRNAs, as it cosediments with translation initiation complexes and depletes polysomes. Cleaved mRNA intermediates accumulate in the 40S fraction, indicating that recognition occurs at an early stage of translation. This is the first example of a viral protein commandeering cellular mRNA turnover pathways to destroy host mRNAs, and suggests that Xrn1 is poised to deplete messages undergoing translation in mammalian cells
    corecore